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THEORETICAL BUCKLING LOADS OF BORONlALUMlNUM AND GRAPHITElRESlN 


FIBER-COMPOSITE ANISOTROPIC PLATES 


by Christos C. Chamis 


Lewis Research Center 


SUMMARY 

Theoretical results a r e  presented for  designing with boron/aluminum composites 
when these composites a r e  buckling critical. The composites a r e  assumed to be rec
tangular plates with four simply supported edges. They a r e  subjected to single and com
bined normal and shear loads in the plane of the plate. The plates a r e  made from a 
unidirectional composite whose fiber direction is oriented at some angle to the load 
direction. 

The design data a r e  presented in nondimensional form as buckling load against 
orientation angle for several plate aspect ratios. The results indicate that the buckling 
loads of boron/aluminum plates a r e  independent of fiber orientation if the plate aspect 
ratio is greater than approximately 1. The buckling loads are moderately dependent on 
the orientation angle for plates with aspect ratios less  than about 1. The buckling load 
is independent of aspect ratio in plates with aspect ratios greater than about 2. 

Comparison of buckling results for boron/aluminum composite plates and 
Thornel-75/epoxy composite plates indicates that the boron/aluminum composite plates 
res is t  buckling loads more efficiently than the Thornel-75/epoxy composite on the basis 
of specific buckling strength. The results also indicate that the buckling loads of boron/ 
aluminum composite plates can be predicted using orthotropic theory if their aspect ra
tio is greater than about 1. 

The numerical algorithm used to solve the buckling problem and listing of the cor
responding computer code through which the results were obtained are included. 

INTRODUCTION 

Feasibility studies for the space shuttle indicate that the use of advanced fiber com
posite structural components can result in a considerable increase in payload in the 
shuttle system. Boron/aluminum and graphite/resin fiber composites are leading con
tenders for shuttle applications because these composites offer high stiffness-to-density 
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and high strength-to-density ratios. Panels made from these materials wil l  have to meet 
both material strength and buckling requirements. This report deals with a theoretical 
investigation of the buckling of flat rectangular panels made from boron/aluminum and 
Thornel-75/epoxy fiber composites. 

Several papers have appeared recently dealing with the buckling of anisotropic plates 
(refs. 1 to 8). However, d.esign data a r e  not available for flat panels subjected to com
pressive loads and made from advanced fiber composites such as boron/aluminum and 
graphite/resin. The method described in reference 3 has proved efficient in buckling 
studies of boron/epoxy plates. This method is used herein to generate design data for 
boron/aluminum plates. Some data for Thornel-? 5 graphite/epoxy resin plates a r e  also 
generated for comparison purposes. Data were generated for aspect ratios of 1/2, 1, 
2, and 4. 

The panels considered are anisotropic and simply supported. They a r e  subjected to 
combined in-plane (normal and shear) load (fig. 1). The material i s  a unidirectional 
composite with the fiber direction oriented at an arbitrary angle to the load direction 
(fig. 1). The analytical algorithm used i s  the assumed mode method in conjunction with 
the Galerkin method. A computer code was  developed based on the Galerkin method, and 
the code w a s  used to generate the theoretical design data presented herein. A brief de
scription of the analytical method is given in the report. All symbols a r e  defined in ap
pendix A. The numerical algorithm used to solve the resulting eigenvalue problem i s  
described in appendix B. Input data sample sheets with explanations a r e  given in appen
dix C. A listing of the computer program with sample cases is given in appendix D. 

,r FIBER 
' DIRECTION 

(MATERIAL 
AXIS) 

x (STRUCTURAL 
AXES) 

2 NY 

Figure 1. - Fiber-composite plate geometry and loading - a l l  f ou r  edges simply supported 
(aspect ra t io  = albl. 

2 




BRIEF DESCRIPTION OF UNDERLYING THEORY 

The underlying theory for  buckling loads of anisotropic plates is described in refer
ence 3 with pertinent discussions in references 6 to 8. Briefly, this theory consists of 
expressing the potential energy of a plate in te rms  of displacement variables. Taking 
the variation of the potential energy function yields the field equation and the correspond
ing boundary conditions. The resulting system then is solved by the assumed mode 
technique in conjunction with the Galerkin method. 

The equation resulting after the variation of the energy function is 

(The notation is defined in appendix A . )  The a rea  integral represents the field equation, 
and the line integrals represent the boundary conditions. 

The assumed buckling mode described in reference 3 is represented by a Fourier 
double sine series.  This mode satisfies the imposed boundary conditions, but i t  does 
not satisfy the natural boundary conditions if the material and structural axes do not co
incide. However, the mode is forced to satisfy the natural boundary conditions approx
imately through the Galerkin method as discussed in reference 3. 

Substituting the assumed mode in equation (l),applying the Galerkin method, and 
carrying out the algebra result in a set  of linear equations which represent the eigen
value problem of the plate. This system is coupled for either a combination of shear 
and normal loads and/or noncoincident material and structural axes. 

The eigenvalue problem is solved by using the Power method, which is a highly ef
fective iterative numerical technique in seeking the largest eigenvalue of the system. 
The indicia1 equations which were used to generate this system and the Power method 
a r e  given in appendix B in outline form. 
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BRIEF DESCRIPTION OF COMPUTER PROGRAM 

The numerical algorithm described in appendix B has been transformed into a com
puter code which is rather simple and can be generated from the information supplied 
in appendix B. A FORTRAN N compiled listing of a computer program based on the 
algorithm in appendix B is given in appendix D, with sample cases and output. Input 
data sample sheets are given in appendix C. 

The inputs to the code are composite system identification, fiber volume ratio, 
orientation angle, plate aspect ratio, and flexural rigidities. The outputs are the num
ber  of te rms  in the assumed mode ser ies  expansion required for convergence, the rela
tive e r ro r  between the last two iteration cycles, the buckling load, and topo-plot data 
of the buckled shape of the plate normalized with respect to the largest deflection. 

The algorithm described in appendix B runs into difficulty when the shear buckling 
load of a plate is sought. In this particular case, the difficulty i,%bypassed by including 
normal loads which are a very small fraction of the shear load. Further discussion on 
why these difficulties a r i se  is presented. in reference 3. 

THEORETICAL DESIGN DATA 

The theoretical design data generated herein a r e  based on the schematic illustrated 
in figure 1. In this figure, the type of loading condition, the plate geometry, and the 
fiber orientation a r e  defined. The x-y coordinate reference system i s  referred to as 
the structural axes system. The fiber direction coordinate system which is located at 
the angle 8 from the structural axes system i s  referred to as the material axes sys
tem. The loading conditions a r e  identified by Nx, N

Y
, and Nxy as i s  noted in the 

figure. 
The flexural stiffnesses required in calculating the buckling loads were calculated 

by using the computer code described in reference 9. Typical values of the elastic con
stants of the plate along its material axes a r e  given in table I for boron/aluminum and 
Thornel- 75/epoxy composites with a fiber volume ratio of 0. 5. The flexural rigidities 
a r e  computed as functions of the orientation angle using the data in table I. 
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TABLE I. - THEORETICAL UNIDIRECTIONAL COMPOSITE 

PROPERTIES AT FIBER VOLUME RATIO O F  0.5 
~ 

Property Boron/alum inum Thornel-7 5/epoxy 

Longitudinal modulus, 24. 2X106 (35. OX106) 26. Ox106 ( 3 7 . 8 ~ 1 0 ~ )  

N/cm2 (psi) 
Transverse modulus, 16. 8x1O6 (24. 3X106) 6. 9X106 (1.OX106) 

N/cm2 (psi) 
Shear modulus, 8. OX106 (11.6x1O6) 0. 44X106 (0. 63x1O6) 

N/cm2 (psi) 
Poisson's ratio 0.24 0. 25 

3Density, g/cm 2.62 (0.095) 1. 55 (0. 056) 
(lb/in. 3, 

Buckl ing of Boron/Aiuminum and Thornel-751Epoxy Panels 

Buckling loads for a single loading condition for panels made of boron/aluminum and 
Thornel-?5/epoxy a r e  illustrated in figure 2, where the specific buckling s t ress  has been 
plotted as a function of the orientation angle for an aspect ratio of 2. The schematic in 
the figure illustrates the type of load condition as well as the orientation angle. As can 
be seen, in this figure, boron/aluminum composites are more efficiently utilized than 

BORONlALUMlNUM 7 
\ 
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Figure 3. - Buck l ing loads fo r  two fiber-composite plates - a l l  f ou r  edges simply 
supported. Fiber volume ratio, 0.5; aspc-3 rat io alb, 2. 

Thornel-'75/resin composites in structures which a r e  critical in buckling as measured by 
the specific buckling s t ress .  

Buckling load comparisons where the panels a r e  loaded in the y-direction are il
lustrated in figure 3. In this figure, it can be seen that the boron/aluminum composite 
panel is considerably stronger in buckling than the corresponding Thornel-75/epoxy 
panel. In this plot, the nondimensional buckling load parameter is plotted as a function 
of the orientation angle for the fixed panel aspect ratio of 2. 

Buckl ing Loads for Individual Loading Conditions 

Design data for boron/aluminum panels which a r e  subjected to compressive load in 
the x-direction a r e  illustrated in figure 4 as a function of orientation for various aspect 
ratios. The important point to be noted from this figure is that the buckling load is in
dependent, or  almost independent, of orientation angle in panels where the aspect ratio 
is approximately greater than 1. Another point to be noted is that the buckling load de
pends only moderately on the orientation angle in panels of aspect ratio less  than l. 

A cross-plot of figure 4 is illustrated in figure 5. The nondimensional load is 
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Figure 4. - Buckl ing loads for boronla luminum composite plates, wi th  a l l  
four  edges simply supported, 
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Figure 5. - Buckl ing loads for boronla luminum composite 
plates, wi th  a l l  four  edges simply supported, subjected t o  
normal  (Nx) compressive load. Fibar volume ratio, 0.5. 
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plotted as a function of panel aspect ratio for various orientation angles. The insensi
tivity of the buckling load as a function of orientation angle in panels with aspect ratios 
greater than about 1is clearly illustrated in this figure. The dashed line symbol is used 
to represent these curves to emphasize that buckling load values were computed only at 
the aspect ratios 1/2, 1, 2, and 4. 

Buckling loads for panels which are loaded in the y-direction only are given in fig
ure  6. As can be seen in this figure, the buckling loads are almost independent of the 
orientation angle in panels with aspect ratios of 1/2 and greater. The buckling load, on 
the other hand, is very sensitive to the aspect ratio in panels with aspect ratios of ap
proximately 2 o r  less. 

Buckling loads for a boron/aluminum composite panel loaded with shear only are il
lustrated in figure 7. The points to be noted in this figure are the following: 

(1)There is a mild buckling load dependence on the orientation angle for panel 
aspect ratios of less  than about 1. 

(2) The buckling load is relatively independent of orientation angle for panel aspect 
ratios of greater than about 1. 

(3) The buckling load is very sensitive to the aspect ratio in panels with aspect ra
tios less  than 2, and this dependence becomes rather insignificant for panel aspect ra
tios greater than 2. 
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RATIO, 
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Figure 6. - Buckling loads for boronlaluminum composite Figure 7. - Buckling loads for boronlaluminum composite
plates, with all four edges simply supported, subjected plates, with all four edges simply supported, subjecteci 
to normal (Ny) compressive load. Fiber volume ratio, 0.5. to shear (N

XY 
) load. Fiber volume ratio, 0.5. 
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Buckl ing Loads for Two Equal Simultaneous Loadings 

Buckling loads, when the panel is loaded with equal loads in the x- and y
directions, are shown in figure 8. In this figure, the nondimensional buckling load pa
rameter is plotted as a function of orientation angle for various panel aspect ratios. 

The results in this figure show that the buckling load is slightly dependent on the 

Ni n
5L 5r ASPECT 
Uz 

d 
a 
s 

z I 

orientation angle for panel aspect ratios less than 1, and practically independent of 
orientation angle for aspect ratios greater than 1.  The buckling load is sensitive to panel 
aspect ratio for aspect ratios less than o r  equal to 2.  This dependence becomes insig
nificant for panel aspect ratios greater than 2. The curves of the buckling load as a 
function of the independent variables indicated in figure 8 parallel the curves of the 
buckling loads indicated in figures 4 and 6, for the individual loadings. 

Buckling loads for  the case when the panel is loaded in the x-direction combined 
with shear a r e  shown in figure 9. The curves of the buckling load for this loading con
dition a r e  parallel to those of the individual cases (figs. 4 and 7). Buckling loads for 
the case when the panel is loaded in the y-direction combined with shear a r e  illustrated 
in figure 10. The buckling load in this figure seems to be practically independent of 
orientation angle for the aspect ratios investigated. However, it is quite sensitive to 
the panel aspect ratio for aspect ratios less  than 2. 
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Figure 10. - Buckl ing loads for boronla luminum composite 
plates, wi th  a l l  four  edges simply supported, subjected to 
combined normal  (Ny) and shear (Nxy  = NY I loads. Fiber 
volume ratio, 0.5. 
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Buckling Loads fo r  Three Equal Simultaneous Loadings 

Buckling loads for panels which are loaded in the x- and y-directions combined with 
shear are shown in figure 11. The schematic in this figure indicates the type of loadings 
and their respective ratios. The nondimensional buckling load is plotted as a function of 
orientation angle for various panel aspect ratios. 

Comparing corresponding curves from figures 8 and 11, it is seen that the addition 

Y 
I NY = N x  FIBER 

; DIRECTION 

/ Y e  
N' NX 
QL -X u 4z 

d 
a 


-a z I I 

f i g u r e  11. - Buckl ing loads fo r  boron la luminum composite 
plates, w i th  al l  four  edges simply supported, subjected to 
combined normal  (NY = N,) and shear (Nxy = N,) loads. 
f i b e r  volume ratio, 0.5. 

of the shearing load decreases the buckling load of the panel only slightly. The point to 
be noted then is that a panel subjected to compressive loads in the x- and y-directions 
wi l l  res is t  almost an equal amount of shearing load for approximately the same buckling 
load. 

Buckling Loads for  Two o r  Three Unequal Simultaneous Loadings 

Buckling loads for panels which are subjected to unequal loads in the x- and y
directions are shown in figure 12. The type of loading condition and respective loading 
magnitudes a r e  illustrated in the sketch given in the figure. In this figure, the nondi
mensional buckling load parameter is plotted as a function of the orientation angle for 
various aspect ratios. The curves of the buckling load for this type of loading condition 
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Figure 12. - Buckl ing loads for boronla luminum composite 
plates, wi th  al l  four  edgas simply supported, subjected to 
combined normal  (Ny = (U2)Nx) loads. Fiber volume ratio, 
0.5. 
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Figure U. - Buckl ing loads for  boronla luminum composite 
plates, wi th  al l  four  edges simply supported, subjected to  
combined normal  (N = (U2)N 1 and shear (Nv = (U2)NX) 
loads. Fiber volume'ratio, 0.35. 

parallel those of the cases  with equal loading condition, as w a s  previously discussed (see 
fig. 8). One additional point to be noted is that the buckling loads of panels with aspect 
ratios of greater than about 2 remain almost invariant as a function of aspect ratio when 
the orientation angle is greater than about 45'. 

Buckling data for panels loaded with unequal combined loading conditions a r e  illus
trated in figure 13. The loading condition for  the panel is illustrated in the schematic 
in the figure. The buckling load is plotted as a function of orientation angle for various 
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aspect ratios. A point to note in this figure is that, at soine orientation angles, panels 
with aspect ratios greater than 2 could have greater buckling loads than panels with 
aspect ratios of 2. As can be seen, the buckling load for  a panel with an aspect ratio of 
approximately 2 is lower than for the panel with an aspect ratio of 4 when the orientation 
angle is approximately less  than 45' 

All the buckling data presented and discussed indicate that the buckling load is insen
sitive to orientation angle for panels with high aspect ratios. The buckling load is mildly 
sensitive to the orientation angle in panels with low aspect ratios. This observation 
leads to  the important conclusion that the buckling loads of boron/aluminum composite 
anisotropic plates can be approximately determined by using classical orthotropic theory. 
This conclusion is indeed a useful one, since the buckling of orthotropic plates has been 
extensively treated in refe ence 5. 

POS s BLE EXTRAPOLATIONS OF DES GN DATA 

The design data presented and discussed were based on a fixed fiber volume ratio of 
0. 5. The data presented herein can be used to extrapolate buckling loads for plates made 
from composites with different fiber volume ratios. The results wi l l  be very close if the 
variation of the fiber volume ratio is within approximately &O percent of the 0. 5 value 
which was  used in generating the design data. 

This extrapolation is justified since the buckling load is nondimensionalized with 
respect to both composite longitudinal modulus and thickness. It is well known that both 
composite modulus and thickness depend on the fiber volume ratio (ref. lo), and that this 
dependence is approximately linear in the fiber-volume-ratio range 0 .4  to 0.6. In this 
sense, then, the extrapolation using the design data presented herein for fiber volume 
ratios within t20 percent of 0. 5 should yield reasonable results. 

The computer code appended in appendix C can be slightly modified to compute the 
first natural frequency of anisotropic boron/aluminum composite panels. In reference 5, 
the vibration problem is discussed, and the analogy in computing the buckling load 
and the natural frequency is made. 

CONCLUSI ONS 


The discussion of the theoretical design data presented leads to the following con
clusions: 

1. Design data for the buckling of unidirectional boron/aluminum panels with fibers 
oriented at any angle to the load direction have been generated and a r e  reported herein. 
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2. Specific buckling s t ress  comparisons showed that, in general, boron/aluminum 
composite panels are more efficient than high-modulus graphite/resin composite panels. 

3. The buckling load of boron/aluminum unidirectional panels is practically inde
pendent of fiber direction at high aspect ratio values. At these aspect ratios, the plate 
can be assumed to have its material axes coincide with its structural axes. Conse
quently, the classical buckling theory of orthotropic plates can be used to predict the 
buckling load. 

4. The buckling loads of boron/aluminum unidirectional panels are only moderately 
dependent on fiber direction at plate aspect ratios less than 1. 

5. Boron/aluminum composite panels loaded by normal in-plane loads which a r e  
near the critical load can carry considerable shear load before they buckle. 

6 .  The buckling loads of boron/aluminum panels are practically independent of 
aspect ratio a t  aspect ratios greater than about 3.  

7 .  The buckling loads of panels with fiber volume ratios within approximately 
Q O  percent of 0 .5  can be extrapolated from the design data presented herein by using 
the appropriate panel thickness and the appropriate composite longitudinal modulus. 

Lewis Research Center, 
National Aeronautics and Space Admini strat  ion, 

Cleveland, Ohio, September 3, 1971, 
129-03. 
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APPENDIX A 

SYMBOLS 

a 

b 

D 

h 

K 

L 

M 

m 

N 
-
N 

Ncr 
n 

P 

q 

W 

W 

x, Y, z 

122,3 

6 


E', E" 


8 

x 


P 

(T 

panel dimension, x-direction 

panel dimension, y-direction 

matrix of flexural rigidities, eq. (1) 

thickness 

plate stiffness matrix, elements given by eqs. (Bl)and (B4) 

load matrix, elements given by eqs. (Bl)and (B4) 

summation index limit on m 

summation index 

summation index limit on n; with subscripts, applied load 

parameter in eq. (Bl) 

buckling load 

summation index 

summation index 

summation index 

vector of coefficients in the displacement mode expansion, eq. (1) 

displacement in z-direction 

panel structural axes 

panel material axes 

variation 

convergence tolerances 

orientation angle of material axes with respect to structural axes 

buckling parameter 

ratios defined by eq. (B5),also weight density 

s t r e s s  and matrix of s t resses  

Subscripts: 


c r  critical or buckling condition 


i row index 
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j column index 


2 undirectional composite property 


m buckling modes, x-direction, axes 


n buckling modes, y-dir ection 


r iteration cycle 


x,y, z directions associated with the respective structural axes 


1,2,3 directions associated with the respective material axes 
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APPENDIX B 


DESCRIPTION OF NUMERICAL ALGORITHM 


The numerical algorithm seeks the eigenvalue of the following matrix equation: 

[K]{WI = S[L]{WI (B 1) 

where [K] and [L] are (M X N) X (M X N) square matrices, {W} is a column matrix con
taining the Wmn, and E is defined subsequently. The (i, j) elements of the [K] and [L] 
matrices a r e  given by the following indicia1 expressions: 

m = 1(1)M, n = l(1)N 

p = 1(1)M, q = l(1)N 


i = (m - l )N  + n; j = (p - l )N  + q 


n+ -2 m 2 2(D12 + 2D33) 
ab 

p = m  and q = i  

J
) m + p  and n + q  odd 

034) 

K..= L. .  = O  m + p  or n + q  even 
11 11 

d 
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- -  

where 

where % is the buckling parameter. Here Nx, NY, and E 
XY 

carry their algebraic 
signs, whereas is always taken as a positive quantity. 

The buckling loads are determined by finding the largest eigenvalue in equation (Bl) 
using the Power method. Several methods a r e  available for  finding eigenvalues of linear 
systems (ref. 3). The Power method is relatively easy to program and is applicable to 
nonsymmetric matrices which have real  eigenvalues. The method yields the largest 
eigenvalue and the corresponding eigenvector. To apply the Power method, equation (Bl) 
is expressed in the following form: 

where h = 1/s. The solution is obtained in an iterative fashion as follows: 

where {W} is normalized relative to its largest element. Thus 

where 

The iteration process stops when 

where E' is usually taken 5 E' 5 lom6. This procedure converges rapidly as long 
as the next largest eigenvalue is not close to A .  The Power method runs into difficul

18 
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ties when the shear buckling load is sought because for this case the magnitude of the 
two largest eigenvalues is the same. This difficulty is easily overcome by using very 
small values for one or  both of the normal loads in combination with the shear load as 
is described in reference 3. 

The buckling load is obtained from the relation 

and 

Thus the smallest buckling load is obtained since Xr+l is the largest eigenvalue of 
equation (B6). 

The buckling load of the plate then is determined by incrementing M and N in 
equation (Bl )  and applying the Power method to compute E until the convergence 
criterion 

is satisfied. The parameter E" is usually chosen as an acceptable percentage of G. 
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APPENDIX C 

INPUT DATA 

Explanations 

Explanations appear in parentheses leadered to corresponding card. 

, ,  . .  
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Sample Input Data fo r  0.02-Inch-Thick BomnlAluminum Plate 
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, , , + * - +  

. .  . . . . 

. *  

,e 10 *D 'I '2"J1 "'I'6 '7 

2 1  




Ill IIIIIIII IIIIIIIIIII 

APPENDIX D 

COMPUTER OUTPUT 

C.c . .  	 BUCKLING O F  ANISCPROPIC PLATES 
C C C Y C h  /E IGVEC/ H ( 8 1  1 
COCtrCN / L ’ R F I L l /  D (  3 ,  3 )./ ARF IL2 /RHO(  3 )  /ARRAY/X( 8 1  9 8 1  1 
REPL N l r h 2 r L A M B 2  
DIb’EhSIOh V l l O ~ l 0 ) ~T f l O ) ,  R S T ( 2 0 , 3 ) , T I T L E ( 3 )  
OAT4 P I / ? .  1 4 1 5 9 2 7 /  
FrOCE= 1 
R E b C ( 5 r 2 3 )  T I T L E  
REPC (5,121 NPIMU 
R E P C  ( 5 ~ 1 3 )A,B 
REPC ( 5 , 1 4 1  ( ( R S T ( I I J ) T J = ~ T ~ ) , I = ~ , ~ P )  

1 REAC ( 5  9 2 5 )  ( ( D (  I .J 1 ~ 3 = 1 ~ 3 )T I=1,3) ,THETA 
DC 11 I I t l r N P  
W R I T E  ( 6 ~ 1 5 )  
DC 2 3 = l r 3  

2 	 RHC ( J R C  T ( I I I J 1 
Nl=O*C 
P= 1 
c a L L  TICLFT ( ~ 1 1  

3 	 P P = C * P  
CPLL P F I L L L  ( M V A I B )  
CALL P I N L A  (MMrKSIG)
IF (KSIG.EC.2) G O  TO 10 
CALI. t r F I L L 2  I M , 4 * B )  
CALL E f G F I N  (MMrLAMB2)
IF 1K§IG.@6.3) I F L A G S T  
N2=1.(3/LbME2 
E P S = P R S ( ( N 2 - N l ) / N 2 )  
I F  (EPSoLEo loOE-4 )  GC T O  5 
I F  ff’.EC.F(U) GO TO 4 
SPS=EPS 
V = C + 1  
N l = h 2  
GC TC 3 

4 W R I T E  ( 6 9 1 6 )  
5 IF (IFLAC.EC.1) WRITE ( 6 , 1 7 1  

CALL T I C L F T  (Q2) 
IC=(G 1-bZ 1 / 6 0  
WR I T E  ( 6  T Z 4 1 T I T L  E 9 THETA 
WRITE ( 6 ~ 1 8 )M,5PS,EPS* I Q  
VP4 x=o 00 
DC 7 I = l t l O  
C C  7 J = l r l O  
V I  I J L = O . O  
DC C K = l * b ’  
DC h L = l r M  
I J = ( K - l ) * N + L  

6 V ( I T J ) = V ( I , J ) + W (  I J ) * S I ~ ( F L @ A T ( K * I ) * P I / l @ ~ O ~ ~ S I N ( F L P A T ( L a J ~ * P I / ~ O . ~  
7 	 V ~ ~ X = ~ M A X ~ ( V ~ A X T A B S ( V I I I J ) ) )  

DC F! I = l v l O  
CC R J = 1 ~ 1 0  

22 



8 

9 


10 

11 


C 

1 2  

1 3  

14 

15 

16 

17 

1 8  


19 


20  

2 1  


22 

2 3  

24 

2 5  


V I I J ) = V  ( It J 1 / V M  AX 

W R I  T E  ( 69 19 1 A T P  rN2 9 MODE9 R H O *  0 

D� 9 I = l * 1 0  
J = l C - I + 1 

T (  I )=C.O 

WR 1 T E  ( 6 9 20 J t  T ( I 1 9 ( V  ( IC* J 1 9  K.+L 9 10 1 

I =o 

XI=C.O 

W R I T E  ( 6 t 2 0 )  I r X  I v  ( T ( J )  r J = l *  10 1 

H R I T E  1 6 9 2 1 )  

GG T C  11 

W R I T E  ( 6 r 2 2 )  

C C h T I h ‘ U E  

GC T C  1 
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WAXIFL'P I k C f X  l T T l I N E 0  

C O M P C S I T E  S Y S T E C  = BORON1ALUMINUM A T  THETA = 30.0 
c=,5 PREVICUS REL. E R R O R =  1.554E-04 LAST REL. ERROR= 3.944E-04 T I N  PEQUIREO FOR THIS CASE W A S  11 SECOV3S 

A 8 NCR MODE RHO-X RHO-Y RHO-XY 

. Z.CCOEtO1 1. OOOE t0 1 8.1 11E+00 1 -1.C00E+00 0. 0. 

THE C - A R R 4 Y  CCLUCNWISE I S  A S  FOLLOWS 

2.219Et01 4.490EtOO 1.870Et00 4.490Et00 1. A45Ei01  1.370Et00 1.870Ei00 1.373E+OO 8.200Et00 

BUCKLED SHAPE 

Y 

1c 0. -0.00 -0.00 -0.00 -0.00 0.00 0.00 0.00 0.00 0.39 -0 .oo 

9 0. 0.20 0.31 0.26 0.12 -0.04 -0.14 -0.18 -0.15 -0.09 0.00 

8 0. 0.39 0.58 0.50 0.22 -0.08 -0.27 -0.34 -0.28 -0.16 0 .oo 

7 0. 0.55 0.80 0.67 0.29 -0.11 -0.38 -0.46 -0 3 9  -0.22 0.00 

6 0. 0.65 0.95 0.79 0.33 -0.14 -0.45 -0.54 -0.45 -0.25 0.00 

5 0. 0.69 1.00 0.82 0.34 -0.16 -0 47 -0.56 -3.47 -0.26 0.00 

4 0. 0.66 0.95 0.77 0.31 -0.16 -0.45 -0.54 -0.44 -0.24 0.00 

3 0. 0 . 5 7  0.P1 0.65 0.25 -0.14 -0.39 -0.45 -0.37 -0.20 0.00 

2 0. 0 - 4 2  0.59 0.46 0.18 -0.11 -0.28 -0.33 -0.27 -0.14 0.00 

1 0 .  0.22 0.31 0.24 0.09 -0.06 -0.15 -0.17 -0.14 -0.37 0 .oo 

0 	 0. 0. 0.  0 .  0 .  0. 0. 0. 0. 0. 0. 

C I 2 3 4 5 6 7 8 7 10 X 



03 
C O W P C S I T E  S Y S T E C  = R O R C N / A L U M I N U M  AT THETA = 30.0 

)r=3 P R E V I C U S  R E L .  ERROR= 8.298E-04 L A S T  R E L .  ERROR= 3.563F-06 T I W E  R E Q U I R E D  F O R  T H I S  CASE WAS 5 S E C O V I S  

A 8 NCR MODE RHO-X RHO-Y RHO-XY 

i ? . C C O E + C 1  1. OOOE +o1 2.986�+00 1 0. -1.000E+00 0. 

THE C - A R R L Y  C C L U P Y W I S E  IS A S  FnLLOWS 

2 219E+C1 4.490E +00 1.870�+00 4.490Et00 1.845E+Ol 1.370�+00 l.R70E+00 1.373E+00 R e  200Et00 

B U C K L E D  SHAPE 

Y 

10 0. -0.09 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -.o. 30 0.00 

9 	 0 .  0.09 0.18 0.24 0.29 0.31 0.30 0.25 0.18 0. LO -0.00 

e 0 .  0.18 0.34 0.47 0.55 0.59 0.56 0-48 0.35 0.18 -0.00 

7 0 .  0.25 0.47 0.65 0.76 0.81 0.77 0.66 0.48 0.25 -0 .oo 

6 0. 0.29 0.55 0.76 0.90 0.95 0.90 0.77 0.56 0.29 -0.00 

5 0 .  0.31 0.59 0.81 0.95 1.00 0.95 0.81 0.58 0.31 -0 .oo 

4 0. 0.30 0.57 0.78 0.91 0.95 0.90 0.76 0.55 0.29 -0.00 

3 0 .  0.26 0.49 0.66 0.18 0.81 0.77 0.65 0.47 0.24 -3.00 

2 0 .  0.19 0.36 0.49 0.57 0.59 0.55 0.47 0.34 0.18 -0.00 

1 0 .  0.10 0.19 0.26 0.30 0.31 0.29 0.25 0.18 0.39 -0.00 

C 0 .  0. 0. 0. 0. 0. 0 .  0. 0. 0. 0. 

C 1 2 3 4 5 6 7 8 9 10 X 



C O P P C S I T E  S Y S T E M  = R O R O N / A L U M I N U M  AT T H E T A  = 30.0 
c = 3  P R E V I O U S  R E L .  ERROR= 8.29RE-04 L A S T  R E L .  ERRORS 5.726E-06 T I W E  R E Q U I R E D  FOR T H I S  t4SE HIS 6 S E C n V 3 S  

b R NC R MODE RHO-X RHO-Y RHO-XY 

2 C C OE+O 1 1. OOOE +01 2.389E+00 1 -1.000E+00 -1.000E+00 0. 

THE C-ARRbY CCLUCNWISE 1s AS FOLLOWS 

2.2 19Et0 1 4.490E t o 0  1.870�+00 1.373�+00 8 ZbOEtOO 

BUCKLED S H A P E  

Y 

1c 0 .  -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.30 0.00 

9 0. 0.10 0.19 0.26 0.30 0.31 0.29 0.24 0.17 0.39 -0.00 

0 0. 0.19 0.36 0 -49 0.57 0.59 0.55 0.46 0.33 0.17 -0.00 

7 0. 0.27 0.50 0.68 0.78 0.81 0.75 0.63 0.45 0.24 -0.00 

8 0. 0.31 0.59 0.80 0.93 0 . 9 5  0.88 0.74  0.53 0.27 -0.00 

5 0. 0.33 0.63 0.85 0.98 1.00 0.93 0.77 0.55 0.29 -0.00 

4 0.  0.32 0.60 0.81 0.93 0.95 0.88 0.73 0.52 0.27 -0.00 

3 0 .  0.28 0.52 0.69 0.79 0.81 0.74 0.62 0.44 0.23 -0.00 

2 0 .  0.20 0.38 0.51 0.58 0.59 0.54 0.45 0.32 0.16 -0.00 

1 0 .  0.11 0.20 0.27 0.3C 0.31 0.28 0.23 0.17 0.39 -0.00 

C 	 0 .  0. 0. 0 .  0 .  0. 0. 0. 0. 0.  0. 

C 1 2 3 4 5 6 7 8 9 10 X 



G) P A X I F L P  I h C E X  F T T b I N E O  
0 

C C M P C S I T E  S Y S T E M  = R O R C N / A L U Y I N U M  AT T H E T A  = 30.0 
P 9 5  P R E V I C I J S  R F L .  ERROR= 1.910E-02 L A S T  R E L .  F R R O R =  1.710E-03 T I M E  9 E Q I l I R E D  F I l R  T H I S  C A S E  W4S 11 S E C 3 Y 3 S  

A 8 NCR M O C E  RHO- X RHO-Y R H n - X Y  

2.CCCE+O1 1.300F+Ol 6.185F+OO 1 -1.000E+00 0. -1.000E+00 

THE C-ARRAY CClUtJriWISE IS AS FOLLOWS 

2.2 19Et01 4.490E to0 1.87CE+OO 4.490Et00 1 .R45E+01 1.370E+00 1.870�+00 1.373�+00 8.200Et00 

RUCKLEO SHAPE 

Y 

-1c 0 .  -0.00 -0.00 .o. 00 .o. 00 -0.00 0.00 0.30 0.00 0. 00 -0 .oo 

9 0. 0.10 0.22 0.32 0.30 0.16 -0.06 -0.24 -0.31 -0.22 0.00 

8 0. 0.21 0 . 4 5  0.61 0 . 5 5  0 . 2 5  -0.17 - 0 . 5 0  -0 .58  -0.39 0.00 

7 0. 0.34 0.66 0 . 8 4  0.70 0.23 -0 34 -0.73 -0.79 -0.50 0.00 

0. 0.45 0.83 0.97 0.72 0 . 1 2  -0.53 -0.91 -0.89 -0.53 0.00 

0. 0.53 0.92 0.99 0.63 -0.03 - 0 . 6 8  -1.00 -0.90 -0.51 0.00 

0 .  0.55 0.91 0.90 0.47 -0.19 -0.76 -0.97 -0 .81  - 0 . 4 3  0.00 

0 .  0.51 0.80 0.71 0.29 -0.29 -0.72 -0.R3 - 0 . 6 4  -0.32 0 .oo 

0. 0.40 0.59 0.47 0.13 -0.29 - 0 . 5 7  -0.60 -0.43 -0.20 0 .oo 

0. 0.22 0.31 C.23 0.03 -0.18 -0.31 -0.31 -0.21 -0.39 0 .oo 

0 .  	 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 

C 1 2 3 4 5 6 7 8 9 10 X 



C A X I C U P  I h C e X  CTTDINED 

CflVPCSITE S Y S T E V  = BORCN/ALUMINUM AT THETA = 30.0 
c = 5  PREVICUS REL. ERROR= 1.603E-03 LAST REL. ERROR= 2.139E-04 TIPE REPUIREO FOR THIS C A S E  W b S  1 2  SECfl loS 

A 8 NCR NODE RHO-X RHO-Y SHO-XY
I 

2.CCOEtOl 1. OOOE +O 1 2.863E+00 1 0. -1.000E+00 -1.000E+00 

THE C - A R R A Y  CCLUCNWISE I S  AS FOLLOWS 

2.2 19EtC 1 4.490Et00 1.870�+00 4.490�+00 1.845Et01 1.37OF+OO 1.870�+00 1.373E+00 8.200E+00 

BUCKLE0 SHAPE 

Y 

10 0 .  -0.00 -0.00 -0.00 -0.co -0.00 -0.00 -0.90 -9.00 -0.30 0.00 

9 0. 0.07 0.14 0.21 0.27 0.31 0.31 0.28 9.21 0.12 -0.00 

8 0. 0.14 0.28 0.42 0.53 0.58 0.58 0.52 0.39 0.21 -0.00 

7 	 n. 0.20 0.41 0.60 0.74 0.81 0.79 0.69 0.51 0.27 -0.00 

b 0. 0.26 0.51 0.73 0.89 0.95 0.92 0.79 0.57 0.30 -0.00 

5 0. 0.29 0.57 0.90 0.95 1.00 0.95 0.80 0.57 0.29 -0.00 

4 0. 0.30 0.57 0.79 0.92 0.95 0.88 0.73 0.51 0.26 -0 .oo 

3 0. 0.2R 0.52 0.69 0.79 0.80 0.74 0.59 0.40 0.20 -0.00 

2 9. 0.21 0.39 0.52 0.5R 0.58 0.52 0.41 0.28 0.14 -0.00 

1 0. 0.12 0.21 O . ? A  0.31 0.30 0.27 0.21 C. 1 4  0.37 -0.00 

C 0. 0.  0 .  0 .  0. 0 .  0 .  0. 9. 0. 0. 

w 
CL C 1 2 3 4 5 6 7 8 9 10 X 

I 



0 MAXXIFCP I t i C e X  ETTAINEO 
h3 

CCMPCSITE S Y S T E M  = AORCN/ALUMINUM AT THETA = 30.0 
F 35 PREVICUS REC.  ERROR= 1.267E-03 LAST REL. ERRDRz 1.331E-04 T I W  REPUIRED FOR THIS C h S E  W A S  11 S E t O Y 3 S  

A 0 NCR MODE RHO-X RHO-Y R HQ- X Y  

2. C O O E + C  1 1. OOOE +o1 2.320�+00 1 -1.000�+00 -l.OOOE+OO -l.OOOE+OO 

THE C - A R R A Y  CCLUt’HWISE I S  P S  FOLLOWS 

2.219�+01 4.490E +00 l.R70F+00 4.490�+00 1.845E+01 1.370�+00 1.870E+00 1.373E+00 8.200Et00 

RUCKLED SHAPE 

Y 

10 0 .  -0.co -0.00 -0.00 -0.00 -0.00 -0.00 -0.30 -0.00 -0.00 0.00 

9 	 0. 0.07 0.15 0.22 0.28 0.31 0.30 0.27 0.20 0.11 -0.00 

a 0. 0.15 0.29 0.43 0.54 0.59 0.57 0.50 0.38 0.20 -0.00 

7 	 0. 0.21 0.43 0.62 0.75 0.81 0.70 0.60 0 -50  0.26 -0.00 

e 0. 0.27 0.53 0.75 0.90 0.95 0.91 0.77 3.56 0.29 -0.00 

5 0. 0.30 0.58 O a t 3 1  0.96 1.00 0.94 0.79 0.56 0.29 -0.00 

4 0. 0.31 0.58 0.79 0.92 0.95 0.88 0.72 0.50 0.26 -0.00 

3 0. 0.28 0.52 0.69 0.79 0.80 0.73 0.59 0.41 0.20 -0.00 

2 0. 0.21 0.39 0.52 0.58 0.58 0.52 0.42 0.28 0.14 -0.00 

1 0. 0.12 0.21 0.27 0.31 0.30 0.27 0.21 0.14 0.37 -0.00 

C 	 0 .  0. 0. 0. 0. 0. 0. 0 .  0. 0. 0 .  

C 1 2 3 4 5 6 7 R 9 1 0  X 



V A X I C L V  IkCEX CTTbINED 

C Q M P C S I T E  S Y S T E V  = R O R O N / A L U M I N U M  AT T H E T A  = 30.0 
C i 5  PREVICUS R E L .  E R R O R =  1.302E-03 L A S T  R E L .  E'IROR= 2.519E-03 

1 37DE+00 

A 8 NCR MODE RHO-X RHO-Y RHO-XY 

2.COOEtC1 1.000E+01 3.896Et00 1 -1.000E+00 -5.000E-01 -5.000E-01 

THE E-ARRAY CCLUCNWISE IS AS FOLLOWS 

2.219Et01 4.490Et00 1. R70E t00 4.490Et00 1.845Et01 1.370Et00 1.870Et00 8.200Et00 

BUCKLED SHAPE 

Y 

1c 0. -0.00 -0. co -0.00 -0.00 -0.00 -0.00 -0.30 -0 .oo -0.00 0 .oo 

9 0. 0.08 0.16 0.24 0.29 0.31 0.30 0.26 0.19 0.10 -0.00 

8 0. 0.16 0.32 0.46 0.55 0.59 0.57 0.48 0.36 0.19 -0.00 

7 0. 0.23 0.45 0.64 0.77 0.81 0.77 0.65 0 - 4 7  0.25 -0.00 

6 0. 0.29 0.56 0.78 0.92 0.95 0.89 0.75 0.53 0.28 -0.00 

5 0. 0.32 0.61 0.84 0.97 1.00 0.92 0.76 0.54 0.27 -0.00 

4 0. 0.32 0.60 0.82 0.93 0.95 0.87 0.70 0.49 0 . 2 5  -0.00 

3 0. 0.29 0.53 0.71 0.80 0.80 0.72 0.58 0.39 0.20 -0.00 

2 0. 0.22 0.40 0.52 0.58 0.58 0.52 0.41 0.27 0.14 -9.00 

1 0. 0.12 0.27 0.2R 0.31 0.30 0.27 0.21 0.14 0.37 -3.00 

C 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 

w 
w C 1 2 3 4 5 6 7 8 3 10 X 



C.4 C O M P C S I T E  S Y S T E C  = f l O R f l N / A L U M I N U V  A T  THETA = 30.0 

I& F=3 PRFVIflUS R E L .  ERROR= 8.29flF-04 LAST R E L .  E R R O R =  5.18RE-05 T I H E  R E Q U I R E 0  F O R  THIS C A S E  W 4 S  1 5  S E C O h o S  


A R N C R  MODE RHO-X RHO-Y RHO-XY 

2. c.c oE tn 1 1.000Et01 3.982Et00 1 -1.000EtOO -5.000E-01 -0.  

THF C - A R R I Y  tCLUb’NW[SE IS AS FOLLOWS 

2.219EtC 1 4.490�+00 1 R70Et00 4 .490Et00 I 845E+01 1 .370Et00 1 870EtOO 1.373E+00 E.200Et00 

BUCKLED SHAPE 

.o .00 
Y 

10 


9 

8 


7 

6 

5 

4 

3 

2 

1 

C 

0. -0.00 -0.00 .o. 00 -0.00 -0.00 -0.00 -0.00 -0.90 0.00 

0. 0.12 0.22 0.28 0.30 0.26 0.70 0.14 0.37 -0.00 

0. 0.23 0.42 0.54 0.56 0.49 0.38 9-26 0.13 -0.00 

0. 0.32 0.58 0.75 0.77 0.67 0.52 0.35 0 . 1 8  -0.00 

0. 0.37 0.68 0.88 0.91 0.78 0.61 0.41 0.21 -0.00 

0. 0.40 0.72 0.93 0.95 0.82 0.64 n.43 0.22 -0.00 

0. 0.38 0.69 0.89 0.90 0.77 0.60 0.41 0.21 -0.00 

3. 0.33 0.59 0.76 0.77 0.66 0.51 0.34 0.17 -0.r)o 

0. 0.24 0.43 0.55 0.55 0.47 0.37 0.25 0.13 -0.00 

0. 0.13 0.23 0.29 0.29 0.2s 0.19 0.13 0.37 -0.00 

0 .  0 .  0 .  0 .  0. 0. 0. 0 .  0. 0. 

C 1 2 3 5 6 7 8 9 13 X 

0.31 

0.59 

0.81 


0.95 

1.00 


0.95 

0.81 


0.59 

0.31 


0. 

4 



w cn 


MAXIFLP IhCEX CTTdINED 

CCPPCSITE S Y S T E C  = RORCN/ALUMINUM A T  THFTA = 30.0 
F=5 PREVICUS REL. E R R O R =  3-292E-92 LAST REL. ERROR= 2.30RF-03 T IYE 9EQUIRFD FOR THIS CASE W A S  

A B NCR M O D E  RHO-X RHO-Y RHO-XY 

Z . C C O E + C  1 1. OOOE t o  1 1.206Et01 1 -4.000E-02 -4.000E-02 -l.OOOE+OO 

THE C - A R R P Y  CCLUVNWISE I S  P S  FOLLOWS 

2.219E+01 4.490Et00 1.870E+00 4.490�+00 1 8 4 5 E t 0 1  1.370�+00 

BUCKLED SHAPE 

Y 

1c 3 .  0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.30 -9.00 0.30 

9 0 .  -0.01 0.01 0.09 0.22 0.32 0.32 0.21 0.08 0.00 

8 0. -0.02 0.05 0.24 0.47 0.61 0.56 0.33 0.09 -0.02 

7 0. 0.01 0.15 0.43 0.72 0.83 0.67 0.34 0.04 -0.36 

6 0. 0.07 0.29 0.64 0.92 0.93 0.64 0.24 -0.05 -0.10 

5 0. 0.15 0.44 0.80 1.00 0.88 0.49 0.39 -0.14 -0.14 

4 0. 0.23 0.54 0.A6 0.94 0.71 0.29 -0.06 -0.19 -0.14 

3 3 .  0.27 0.57 0.78 0.76 0.48 0.10 -0.14 -0.19 -0.11 

2 0. 0.25 0.48 0.59 0.50 0.25 -0.01 -0.15 -0 .15 -0.37 

1 0. c.15 n.27 0.31 0.24 0.10 -0.04 -0.10 -0.08 -0.33 

C 	 0. 0 .  0. 0. 0. 0. 0. 0. 0. n. 

C 1 2 3 4 5 6 7 8 9 

11 SECCIVIS 

8.200E+00 

E.00 

-0.00 

-0.00 

-0.00 

-0 .oo 

-0.00 

0.00 


0.00 


0.00 


0.00 


0. 

10 X 
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